
Modeling the Performance of an Algebraic Multigrid Cycle
on HPC Platforms

Hormozd Gahvari1, Allison H. Baker2, Martin Schulz2

Ulrike Meier Yang2, Kirk E. Jordan3, William Gropp1

1Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551

3IBM TJ Watson Research Center, Cambridge, MA 02142

gahvari@illinois.edu, abaker@llnl.gov, schulzm@llnl.gov
umyang@llnl.gov, kjordan@us.ibm.com, wgropp@illinois.edu

ABSTRACT

Now that the performance of individual cores has plateaued,
future supercomputers will depend upon increasing paral-
lelism for performance. Processor counts are now in the
hundreds of thousands for the largest machines and will soon
be in the millions. There is an urgent need to model appli-
cation performance at these scales and to understand what
changes need to be made to ensure continued scalability.
This paper considers algebraic multigrid (AMG), a popular
and highly efficient iterative solver for large sparse linear
systems that is used in many applications. We discuss the
challenges for AMG on current parallel computers and fu-
ture exascale architectures, and we present a performance
model for an AMG solve cycle as well as performance mea-
surements on several massively-parallel platforms.

Categories and Subject Descriptors

G.4 [Mathematical Software]: Algorithm design and anal-
ysis, Parallel and vector implementations; G.1.3 [Numerical
Analysis]: Numerical Linear Algebra—Linear systems (di-
rect and iterative methods)

General Terms

Algorithms, Performance

Keywords

Algebraic Multigrid, Scaling, Performance Modeling, Mas-
sively Parallel Architectures

1. INTRODUCTION
Multigrid methods are popular for the solution of large

sparse linear systems, which is a necessary and often time-
consuming element of many large-scale scientific simulation
codes. The parallel AMG solver BoomerAMG [11] in the

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ICS’11, May 31–June 4, 2011, Tuscon, Arizona USA.
Copyright 2011 ACM 978-1-4503-0102-2/11/05 ...$10.00.

hypre software library [12], for example, is an integral com-
ponent in simulations in diverse areas such as groundwa-
ter flow, explosive materials modeling, electromagnetic ap-
plications, fusion energy simulations, and image-guided fa-
cial surgery. Multigrid methods have the“optimal”property
that, when they work well, the amount of work per unknown
stays constant. This property is especially attractive for
parallel computing: as the size of supercomputers increases,
we can solve increasingly larger problems in a roughly fixed
amount of time.

Since the performance of AMG has a profound impact on
a wide variety of applications across a wide range of disci-
plines, it is crucial to understand the challenges for future
architectures with increased parallelism as well as to pre-
dict and locate performance bottlenecks that hinder perfor-
mance. Therefore, given that currently no computers exist
with several millions or billions of cores available, the devel-
opment of performance models to evaluate algorithm per-
formance has become very important to prepare application
codes for exascale computing and beyond.

In this paper, we develop a novel performance model for
the solve phase of the AMG algorithm. To our knowledge
this is the first formal characterization of this important
application. We start with the basic α-β model for commu-
nication combined with an analytical model of the computa-
tion. We then add penalties based on machine constraints,
including distance effects, reduced per core bandwidth, and
the number of cores per node. We validate the model on
several parallel platforms and illustrate various challenges
to the scalability of AMG, including the increasing com-
munication complexity on coarser grids and the effects of
increasing numbers of cores per node on the performance.

We make the following contributions:

• We present a performance model for the AMG solve
cycle and validate it across various multicore architec-
tures.

• We expose several bottlenecks on the various architec-
tures using the AMG model.

• We discuss model-based predictions for the scalability
of AMG on future machines.

This paper proceeds as follows. Section 2 discusses re-
lated work. Section 3 summarizes AMG and the perfor-
mance challenges it faces on parallel machines. Section 4



describes our performance model, and Section 5 presents
experiments done to validate it. Section 6 discusses lessons
from the model results, followed by concluding remarks in
Section 7.

2. RELATED WORK
A wide range of related projects target the modeling of

numerical codes on large scale parallel systems. For ex-
ample, [13] provides an analytical model for the applica-
tion SAGE, [15] describes an approach to combine computa-
tion and communication profiles into a general performance
model, and [3] targets the prediction of large scale perfor-
mance behavior based on the extrapolation of small scale
performance results.

While the issue of scaling AMG to higher and higher pro-
cess counts has been a subject of much study recently, no
performance models for AMG have been developed yet. In
[2] and [1], changing the programming model is investigated
as a means of better matching emerging multicore clusters
and improving AMG performance. Performance models and
their implications for geometric multigrid on exascale sys-
tems were considered in [8], but geometric multigrid is a
less complex algorithm than AMG and does not suffer from
the same performance degradation on the coarser grid lev-
els. Also of interest is a brief analysis of when it would be
preferable to use redundant computation to replace com-
munication in [10], but again this analysis is for geometric
multigrid, not AMG. Finally, the moving of data between
main memory and cache can be a significant factor in the
application performance, and this is examined for multigrid
in [5]. We have not considered this at this time, but the un-
derlying message of reducing data movement also motivates
our work.

3. ALGEBRAIC MULTIGRID
Multigrid methods are well-suited for large-scale scientific

applications because they are algorithmically scalable, i.e.
they solve a sparse linear system A(0)u = f0 with n un-
knowns with O(n) computations. They obtain this optimal-
ity by eliminating “smooth error”, e, that is not removed
by relaxation (or smoothing) by coarse-grid correction us-
ing successively smaller grids. Algebraic multigrid (AMG)
does not require an explicit grid. Instead coarse grid se-
lection and the generation of interpolation and restriction
operators depend entirely on the matrix coefficients. For a
detailed description of AMG, see [18], for example.

AMG consists of a setup phase and a solve phase, as il-
lustrated in Figure 1. We describe and analyze the sim-
plest multigrid cycle, the V-cycle, but our approach can be
straightforwardly extended to analyze the more complicated
W-cycle and full multigrid cycle. In the setup phase, the
coarse grid variables, interpolation operators P (m), restric-
tion operators R(m) and the coarse grid matrices A(m+1), are
determined for m = 0, ..., k − 1. The coarsest level k − 1 is
reached when A(k) is sufficiently small. In our experiments,
A(k) has at most nine unknowns. Note from Figure 1 that
the coarse grid matrices are determined via a triple matrix
product, and, as a result, the “stencil size” on each grid level
tends to increase as we coarsen. In other words, the coarse
grid matrices are less sparse and require communication with
more neighbor processes (to perform a matrix-vector multi-
plication, for example) than the fine grid matrices.

Setup Phase
• Select coarse “grids” 

• Define interpolation,    P(m) , m=1,2,…

• Define restriction,  R(m)  = (P(m))T

• Define coarse-grid operators, A(m+1)  = R(m) A(m) P(m)

Solve Phase (level m)

Smooth A(m) um = fm Smooth A(m) um = fm

Compute rm = fm - A(m) um Correct um    um + em

Restrict rm+1 = R(m) rm Interpolate em = P(m) em+1

Solve A(m+1) em+1 = rm+1

Figure 1: AMG building blocks.

In the solve phase, a smoother is applied on each level
m = 0, ..., k − 1, and then the residual rm is transferred
to the next coarser grid, where the process continues. On
the coarsest level, the linear system A(k)ek = rk is solved
by Gaussian elimination. The error ek is then interpolated
back up to the next finer grid, followed by relaxation. This is
continued all the way up to the finest grid. The m-th level of
the solve phase is described in Figure 1. The primary com-
ponents of the solve phase are the matrix-vector multipli-
cation (MatVec) and the smoother. The classical smoother
used for algebraic multigrid is Gauss-Seidel, which is highly
sequential. Therefore, we use a parallel variant, called hy-
brid Gauss-Seidel, which can be viewed as an inexact block-
diagonal (Jacobi) smoother with Gauss-Seidel sweeps inside
each process. In other words, we use a sequential Gauss-
Seidel algorithm locally on each process, with delayed up-
dates across processes. One sweep of hybrid Gauss-Seidel is
very similar to a MatVec.

For our experiments, we use BoomerAMG, the parallel
AMG code in the hypre software library. We use HMIS
coarsening [17] with extended+i interpolation [16] truncated
to at most 4 coefficients per row and aggressive coarsening
with multipass interpolation [19] on the finest level.

3.1 Parallel Implementation
BoomerAMG uses the ParCSR matrix data structure,

which is based on the sequential compressed sparse row
(CSR) storage format. The ParCSR matrix A consists of
p parts Ak, k = 1, ..., p, where Ak is stored locally on pro-
cess k. Each Ak is split into two matrices Dk and Ok. Dk

contains all coefficients of Ak, whose column indices point to
rows that are stored locally on process k. Ok contains the re-
maining coefficients of Ak. Both matrices are stored in CSR
format. Whereas Dk is a CSR matrix in the usual sense,
for Ok, which in general is extremely sparse with many zero
columns and rows, all non-zero columns are renumbered for
greater efficiency, requiring an additional array that defines
the mapping of local to global column indices.

In order to perform a parallel MatVec or smoothing step,
process k needs to evaluate Akx = DkxD +OkxO, where xD

is the local part of vector x and xO the portion that needs
to be received from other processes (receive processes). In
order to receive the required information as well as to send
information needed by other processes (send processes), each
process has a communication package that contains the fol-



Figure 2: Level-by-level communication patterns for an AMG solve on a 7-point 200×200×200 Laplace problem
using 128 processes. Levels 0 (finest grid) through 3 (left to right) are on the top row, and levels 4 through 7
(left to right) are on the bottom row. Areas of black indicate zero messages between processes.

lowing information: the IDs of the receive processes, the size
of the data to be received by each receive process, the IDs
of the send processes, and the indices of the elements that
need to be sent to each send process. The actual commu-
nication is then performed by posting non-blocking receives
(MPI Irecv) to each receive process followed by non-blocking
sends (MPI Isend) and finalized by an MPI Waitall to all
posted operations. See [6] for more discussion on the imple-
mentation details.

Regarding the distribution of data on the coarser levels,
coarse points are kept on the same processes that they were
located on at the finer levels. Because the number of coarse
points will eventually be smaller than the total number of
processes, on the coarser levels processes will start“dropping
out”when they no longer own any rows in the matrix. There-
fore, while a process’s neighbors will be “close” in terms of
process ranks at the fine levels, on the coarser levels neigh-
bors will be farther away and messages will be smaller in
size. On the coarsest level, where at most nine processes
are still active, the remaining data (matrix and vectors) is
distributed to all active processes, each of which then solves
the coarsest system using Gaussian elimination.

3.2 Performance Challenges
The challenges to achieving good parallel AMG perfor-

mance mainly center around performance degradation on
coarse grids. As mentioned before, each process’s commu-
nication partners will be farther away on the coarser grids
than on the fine grids. There is also little computation on
the coarser levels due to the smaller matrix sizes, so com-
munication dominates the time spent here. Delays in send-
ing messages to distant processes can cause scalability con-
cerns, as an analysis in [8] found. This analysis, however,
targeted only geometric multigrid for five-point and seven-
point Laplace problems, where the communication pattern
remains a simple, fixed stencil on all grids. When AMG
is employed to solve the same problems, the communication
pattern starts off as a simple stencil, but eventually becomes

more irregular and involves far more communication part-
ners, or in other words, increases the communication neigh-
borhood for each process.

An initial performance experiment confirms this behav-
ior: Figure 2 (obtained using the performance analysis tool
TAU [14]) shows the communication between pairs of pro-
cesses on each level of an AMG solve using 128 processes.
Initially, on level 0, communication is regular and mostly fo-
cused on nearest neighbors. In subsequent levels, the com-
munication neighborhood grows until, in level 5, it covers
almost the complete process space. At the same time, we
see several processes leave the communication pattern (black
horizontal and vertical lines). In level 6, these dropped pro-
cesses start to dominate, and in level 7, only a few pro-
cesses remain. The communication and computation statis-
tics from our subsequent experiments to validate our perfor-
mance model, which are in Table 1, also highlight this trend.
On the finer grids, computation time dominates the execu-
tion time, but then on the coarser grids, the amount of data
per process gets small and communication time dominates
instead.

Further challenges arise due to the trend of increasing
numbers of cores on each node of a massively-parallel ma-
chine. The numerous cores on a single node contend for
access to the interconnect, which slows down coarse grid
performance even further because of the large number of
messages that need to be sent on those coarse levels. De-
spite the fine grid matrix being many orders of magnitude
larger than those matrices on the coarsest levels, the solve on
the coarse grid can take as long as the solve on the fine grid.
For example, this performance problem occurs when using
1024 processes on the Hera machine (machine specifications
are given in Section 5). The computation on the fine grid
problem, which has 64 million unknowns, took 25.9 ms, but
the computation on a much coarser grid level with only 1224
unknowns took 42.3 ms. More generally, further examples of
this unexpected and troubling phenomenon are seen in the
results in Section 5. Note that two prior studies [2, 1] have



examined this issue to a limited extent and found that us-
ing OpenMP on the individual nodes and pinning threads to
cores and processes to sockets can alleviate these problems
to some degree, but not completely. We discuss multicore
issues when presenting our performance models, but the use
of OpenMP and pinning of threads and processes is beyond
the scope of this paper.

4. MODELING PERFORMANCE
To understand the performance of AMG and predict its

performance on future machines, we develop a performance
model for the solve cycle that requires minimal machine-
specific information. We first start with models for local
computation and communication. Combined, these two
models form our baseline model, which we consequently re-
fine to reach a complete model that is able to cover the
relevant system architecture properties.

For this we define the following terms:

• P – total number of processes

• Ci – number of unknowns on grid level i

• si, ŝi – average number of nonzeros per row in the level
i solve and interpolation operators, respectively

• pi, p̂i – maximum number of sends over all processes
in the level i solve and interpolation operators, respec-
tively

• ni, n̂i – maximum number of elements sent over all
processes in the level i solve and interpolation opera-
tors, respectively

• ti – time per flop on level i

We do not consider the overlap of communication and
computation here, as on coarse grids there is hardly any
computation available for this purpose. The use of maxi-
mum numbers of sends accounts for the use of nonblocking
communication and MPI Waitall, as the processes that are
waiting are waiting for the one that is doing the most com-
munication to finish. For all AMG solves, we assume one
smoothing step before restricting and one smoothing step
after interpolation (the default in BoomerAMG).

4.1 Modeling the AMG Steps
The computation time is modeled by multiplying the num-

ber of floating-point operations by the time per flop tc. The
flops in the AMG solve cycle are incurred as a result of
a sparse matrix-vector multiplication (MatVec) for the in-
terpolation and restriction steps and the similar operation
of applying the smoother. Note that an in-depth study [7]
found the floating-point rate for the MatVec operation to
vary widely depending on the size of the matrix and vector.
For this reason, we allow tc to vary depending on the level,
and denote the time per flop on level i with ti.

We model the AMG solve cycle by modeling each level
individually and write the total time of one AMG solve cycle
as

T
AMG
solve =

G
X

i=0

T
i
solve,

where G is the number of grid levels and T i
solve is the time

spent in the solve cycle at level i. We then split the time at

each level, T i
solve, into the time spent smoothing, restricting,

and interpolating on that level:

T
i
solve = T

i
smooth + T

i
restrict + T

i
interp.

Here, T i
smooth is the time spent smoothing on level i, T i

restrict

is the time spent restricting from level i to level i + 1, and
T i

interp is the time spent interpolating from level i to level
i − 1.

4.2 Modeling Communication
For communication, we start with the basic α-β model for

interprocess communication, which breaks down the cost of
communication into the start-up time α (latency) and the
per-element send time β (inverse bandwidth). If a message
has n elements in it, then the send cost is

Tsend = α + nβ.

Note that α covers both the software overhead and the la-
tency involved in message passing, and β is tied to the
achievable bandwidth.

To improve upon the basic model, we then add penalties
to the parameters to take into account machine-specific per-
formance issues. In particular, we add a γ term to take
into account communication distance and switching delays
on the interconnect. We penalize β to account for limited
bandwidth, and we penalize α and γ to account for perfor-
mance degradation arising from multiple cores on a single
node contending for available resources.

4.3 Baseline Model (α-β Model)
To reach our baseline model, we apply the communication

model in the description of the three main steps and deduce
formulas for each step based on the algorithmic requirements
of the AMG implementation.

The complete time for the smoother at level i is given by

T
i
smooth(α, β) = 6

Ci

P
siti + 3(piα + niβ).

This reflects one smoother application before restricting, one
MatVec to form the residual, and one smoother application
after interpolation, with two flops (one multiplication and
one addition) per matrix entry.

The time for restricting on level i is given by

T
i
restrict(α, β) =



2
Ci+1

P
ŝiti + p̂iα + n̂iβ if i < G

0 if i = G.

This reflects the cost of one MatVec that represents restric-
tion from level i to level i + 1.

The time for interpolation on level i given by

T
i
interp(α, β) =



0 if i = 0

2
Ci−1

P
ŝi−1ti + p̂i−1α + n̂i−1β if i > 0.

This reflects the cost of one MatVec that represents inter-
polation from level i to level i − 1.

Therefore the complete baseline model is given by

T
AMG
solve (α, β) =

G
X

i=0

T
i
solve(α, β),

where

T
i
solve(α, β) = T

i
smooth(α, β) + T

i
restrict(α, β) + T

i
interp(α, β).



4.4 Distance Penalty (α-β-γ Model)
In modern interconnection networks it is assumed that

distance does not have much effect on communication time.
However, with many messages being sent at once, as is the
case for coarse grids in AMG, this is no longer a safe as-
sumption. On larger machines distance will be an even big-
ger factor. To take this into account, we replace the α in
the baseline model by α(h) = α(hm) + (h − hm)γ, where h

is the number of hops a message travels, hm is the smallest
possible number of hops a message can travel in the net-
work, and γ is the delay per extra hop. This covers issues of
switching delays and, to some extent, network contention.
For machines with a mesh or torus interconnect, hm = 1,
and h is assumed to be the diameter of the network formed
by the number of nodes being used, to take into account
routing delays and possible “long hops” across a large ma-
chine room. For machines with a fat-tree interconnect, the
shortest message travels one switch, or two links, so hm = 2.
The fat-tree machines we consider here have two-level trees,
so h is 4, as each message passes through at most four links.

In terms of the baseline model, which was expressed as
TAMG

solve (α, β), a function of α and β, we get

T̃
AMG
solve (α, β, γ) = T

AMG
solve (α(hm) + (h − hm)γ, β).

4.5 Bandwidth Penalty (on β)
The peak hardware bandwidth is rarely achieved in mes-

sage passing under ideal conditions using typical message
sizes. This achievable bandwidth is in turn rarely achieved
under non-ideal conditions. We take this into account by
multiplying β by Bmax

B
, where Bmax is the peak hardware

per-node bandwidth, and B is the bandwidth correspond-
ing to β (if B is in bytes per second, and β is the time
to send one double-precision floating point value, we would
have B = 8

β
). The fraction Bmax

B
provides a measure of how

much worse than ideal the available bandwidth actually is.
The formula for the resulting model becomes

T
β
penalty = T̃

AMG
solve

„

α,
Bmax

B
β, γ

«

.

4.6 Multicore Penalty (on α and/or γ)
As mentioned previously, the increasing number of cores

per node on parallel machines brings an additional set of
challenges. Among other issues, there is increased contention
between cores on a node to get onto the interconnect as well
as additional noise caused by accesses to resources shared
by multiple cores. While a precise accounting of all of these
problems is essentially impossible, we model these effects
with a focus on worst-case behavior, in particular on ma-
chines in which the aggregate bandwidth that could be gen-
erated by all cores communicating exceeds the per node
bandwidth. We address this by multipling one or both of
the terms α(hm) and γ by

˚

cPi

P

ˇ

. Parameter c is the number
of cores per node, and Pi is the number of active processes
on level i, meaning those processes that have not “dropped
out”and have work to do on that level. The resulting models
become

T
α
penalty = T̃

AMG
solve

„‰

c
Pi

P

ı

α, β, γ

«

and

T
γ
penalty = T̃

AMG
solve

„

α, β,

‰

c
Pi

P

ı

γ

«

.

5. MODEL VALIDATION
In this section, we first describe the considered architec-

tures and the experimental setup, including the test prob-
lem, and then present experimental results to validate the
model.

5.1 Machine Descriptions
To test our performance models, we run a series of exper-

iments on the five architectures described in this section.
Intrepid is a large IBM BlueGene/P system at Argonne

National Laboratory, consisting of 40 racks with 1024 com-
pute nodes per rack. On each node is a quad-core 850 MHz
PowerPC 450 processor. The nodes are connected by a pro-
prietary 3D torus interconnect. The hardware bandwidth
between nodes is 5.1 GB/s. On the software side, the com-
pute nodes run a specialized small footprint compute node
kernel. Further, for all experiments we use IBM’s compiler
and the BG/P derivative MPICH-2 version.

Jaguar is a hybrid Cray system at Oak Ridge National
Laboratory consisting of both XT5 and XT4 nodes. These
are organized into two partitions, one that is XT5 and one
that is XT4. We run on the XT5 partition, which has 18,688
compute nodes in all. On each node are two hex-core 2.6
GHz AMD Opteron processors. However, we only use eight
cores per node, as our test problem was created with power-
of-two core counts in mind. The nodes are connected by a 3D
torus interconnect. The hardware bandwidth between nodes
is 6.4 GB/s. On the software side, the compute nodes run
Compute Node Linux. Further, for all experiments we used
PGI’s compiler suite and Cray’s native MPI implementation.

Hera is a Linux cluster at Lawrence Livermore National
Laboratory consisting of 800 compute nodes, with four quad-
core 2.3 GHz AMD Opteron processors per node. The nodes
are connected by Infiniband, and organized as a two-level
fat-tree topology. The first-stage switches have 24 ports,
and the second-stage switches have 288 ports. The hardware
bandwidth between nodes is 2.5 GB/s. On the software side,
Hera runs CHAOS, a specialized version of RHEL5 adapted
for HPC. Further, for all experiments we use gcc 4.1.2 and
the MPI implementation is MVAPICH v0.99.

Zeus is a Linux cluster at Lawrence Livermore National
Laboratory consisting of 260 compute nodes, with two four-
core 2.5 GHz Intel Xeon processors per node. The nodes are
connected by an Infiniband interconnect similar to Hera’s.
The software setup is identical to Hera.

Atlas is a Linux cluster at Lawrence Livermore National
Laboratory consisting of 1,072 compute nodes, with four
dual-core 2.4 GHz AMD Opteron processors per node. The
nodes are connected by an Infiniband interconnect similar
to Hera’s. The software setup is identical to Hera.

5.2 Experimental Setup
On each of the architectures described above, we ran 10

AMG solve cycles and measured the amount of time spent
in each level. We then divided the results by 10 to get a
measurement of the time spent in each level for an average
solve cycle. While each process takes its own time measure-
ments, because some processes have no work on the coarser
grid levels, we report times from the process that takes the
most time on the coarsest grid. This strategy ensures that
all measurements of time spent in each level are fair. We
note that the maximum time spent in each level over all
processes, which is the intuitive quantity to measure, is not



Solve, 1024 Processes Interpolation, 1024 Processes
Level No. Sends Elems. Sent Unknowns NNZ/row Active Procs. No. Sends Elems. Sent NNZ/row

0 6 10000 64000000 7.0 1024 19 1290 2.1
1 25 3101 4865878 19.2 1024 21 493 3.4
2 26 1808 945465 53.5 1024 23 152 3.7
3 37 812 103412 81.5 1024 25 73 3.7
4 72 401 10442 86.8 1024 36 50 3.6
5 148 318 1201 69.8 709 97 113 3.3
6 93 159 140 45.7 131 48 48 2.2
7 18 18 19 17.7 19 2 2 0.16
8 0 0 1 1.0 1 – – –

Solve, 65536 Processes Interpolation, 65536 Processes
Level No. Sends Elems. Sent Unknowns NNZ/row Active Procs. No. Sends Elems. Sent NNZ/row

0 6 10000 4096000000 7.0 65536 21 1357 2.1
1 26 3122 309040872 19.4 65536 24 536 3.4
2 26 1887 59587160 54.6 65536 25 178 3.7
3 40 826 6337442 85.5 65536 26 89 3.7
4 87 495 583594 99.6 65534 42 73 3.7
5 187 463 57923 97.0 39692 96 140 3.6
6 203 445 6746 86.0 6365 138 153 3.3
7 245 248 842 79.3 832 100 100 2.8
8 125 125 135 59.4 135 64 64 2.6
9 20 20 21 19.5 21 13 13 1.3
10 1 1 2 2.0 2 – – –

Table 1: AMG solve and interpolation operator statistics for Intrepid with 1024 and 65536 processes.

appropriate for a multigrid solve cycle. The reason is that
once a process does not own any rows on a level (drops out),
it quickly moves between levels, going down the grid hierar-
chy and then back up until the point when the interpolation
results in rows on that process. Then, it sits idle until the
the other processes catch up to it. This idle time, which is
essentially the sum of the time spent on the level where the
process drops out and all levels below it, is reported as being
spent in just the level where the process drops out, and so
the maximum time spent in each level gives times that are
far too large on coarse grids.

Our test problem is a 3D 7-point Laplace problem on a
cube, which was also considered in [2]. On Intrepid, Jaguar
and Hera, the problem size per core is 50 × 50 × 25. The
problem is solved using 128, 1024, 8192 and 65,536 cores on
Intrepid and Jaguar, and 128, 1024 and 3456 cores on Hera.
On Zeus and Atlas, fewer cores were available to us, so we
solve the same problem on 512 cores using 50×50×50 vari-
ables per core. We additionally run the problem on 1728
cores on Atlas. Table 1 shows problem sizes and commu-
nication information for the runs on Intrepid. Statistics
for the other architectures are similar and hence omitted.
When viewing the data in Table 1, there are several things
to note. First, one can observe that as the level number
increases, the grid becomes coarser as indicated by the col-
umn labeled ‘Unknowns’. At some coarser level, processes
begin to drop out, as indicated by a decreasing number in
the ‘Active Procs.’ column. After processes begin to drop,
we also see a increase in the number of sends, though at this
point the number of elements sent in each message is getting
smaller (‘Elems. Sent’ column). In the middle levels we also
see the increase in stencil size as indicated by ‘NNZ/row’,
meaning the number of nonzero elements in each row on av-
erage. The restriction operator is not shown because, for all

our experiments, the restriction operator is the transpose of
the interpolation operator.

The mappings of MPI processes to nodes used were the
defaults on each machine. On Intrepid, this is a block map-
ping, where each node is filled with successive MPI ranks
before assigning processes to the next one. Each job is also
guaranteed a contiguous piece of the interconnect. On Hera,
Zeus, and Atlas, the positions of the nodes on the inter-
connect varies from job to job, and the mapping is either
block or cyclic, with the choice left to the scheduler. In a
cyclic mapping, successive MPI ranks are assigned to differ-
ent nodes, until each node has one. Then the next task is
assigned to the first node, and the process repeated until all
the processes are assigned. On Jaguar, information about
which nodes the scheduler allocates and how MPI processes
are mapped to them is proprietary and thus unavailable to
us.

5.3 Machine Parameters
We use benchmark measurements to obtain values for ma-

chine parameters. Parameters α and β are determined from
best-case latency and bandwidth measurements taken by
the latency-bandwidth benchmark in the HPC Challenge
suite [4]. Parameter γ is determined as follows. We start
with the formulation of α in the distance penalty model,
written as a function of the number of hops h:

α(h) = α(hm) + γ(h − hm).

Here, α(hm) is the latency for the shortest possible message
distance, corresponding with the minimum latency number
reported in the benchmark results. The maximum latency
possible is

α(D) = α(hm) + γ(D − hm),

where D is the diameter of the network. Taking the



Intrepid Jaguar Hera Zeus Atlas
α 3.42 µs 6.05 µs 1.31 µs 0.583 µs 4.62 µs
β 19.3 ns 4.47 ns 6.08 ns 5.80 ns 7.29 ns
γ 28.5 ns 39.9 ns 2.68 µs 3.04 µs 0.88 µs
t0 27.4 ns 3.27 ns 5.12 ns 4.67 ns 6.22 ns
t1 12.8 ns 1.18 ns 1.39 ns 1.45 ns 3.22 ns
t2 7.66 ns 0.935 ns 1.09 ns 1.45 ns 2.23 ns

Table 2: Machine parameters for the architectures
evaluated.

maximum latency reported in the benchmark results to be
α(D), we have

γ =
α(D) − α(hm)

D − hm

.

The computation rates ti are measured using a
serial sparse MatVec benchmark [9] run on one node, si-
multaneously on the number of cores per node used in our
experiments to properly stress the memory system. Spe-
cific values are obtained for the first three levels (t0, t1, and
t2), and the value obtained for t2 is used to approximate
the computation rate on all coarser levels. The values are
determined from the observed computation rate for sparse
MatVec problems matching the dimension and number of
nonzero entries per row of the solve operators for the re-
spective levels. Values for all parameters appear in Table 2.

5.4 Validations Results
We apply the possible penalties outlined in the previous

section to the basic performance model and show results for
the following six combinations. Recall that the penalties in
options 2 through 6 are all applied to the baseline model
and note that in parentheses are the corresponding legend
entries for the plots that follow.

1. Baseline model (α-β Model)

2. Baseline plus distance penalty (α-β-γ Model)

3. Baseline plus distance penalty and bandwidth penalty
on β (β Penalty)

4. Baseline plus distance penalty, bandwidth penalty on
β, and multicore penalty on α (α, β Penalties)

5. Baseline plus distance penalty, bandwidth penalty on
β, and multicore penalty on γ (β, γ Penalties)

6. Baseline plus distance penalty, bandwidth penalty on
β, and multicore penalty on α and γ (α, β, γ Penalties)

We model AMG using the models above and contrast their
performance. In the following graphs, the best fit option is
shown as a solid line in the plots, while the others are shown
as lighter weight dotted lines. The actual measured perfor-
mance is shown as a black line. The coarsest grid, which
is solved using Gaussian Elimination instead of smoothing,
is not shown. The results are shown in Figure 3 (Intrepid),
Figure 4 (Jaguar), Figure 5 (Hera, Zeus), and Figure 6 (At-
las).

On Intrepid, once there is little computation, the per-
formance generally tracks the communication counts, with
little overall degradation. The best fit is obtained by the
β penalty model, so distance effects and the bandwidth

penalty play a role as well. The total cycle time is on average
predicted with 71% accuracy. Most of this error is due to
the MatVec benchmark mispredicting the computation rate
on the finest level. The predicted cycle time without this
level has an average accuracy of 94%.

On Jaguar, the other machine with a torus topology, our
results are different; the models with penalties to α do the
best job of tracking the actual performance, with the α, β, γ

penalty model doing the best job overall, though there is
some deviation. This deviation can be partially attributed to
the MatVec benchmark underestimating the time per flop on
the machine. However, the fit that the models provide, with
an average cycle time prediction accuracy of 80%, is still
sufficient to suggest that endpoint contention is primarily
responsible for the performance problems here.

The performance on Hera and Zeus is best tracked by
models with a γ penalty, all of which are very close to each
other. The best fit comes from the α, β, γ penalty model,
with average cycle time prediction accuracies of 82% and
98% for Hera and Zeus, respectively. On Atlas, the best fit
is the β, γ penalty model, with an average cycle time pre-
diction accuracy of 87%, though the model does not do an
ideal job of tracking the level-by-level performance. Note
that Atlas has a much higher latency than Hera and Zeus,
and the models with an α penalty substantially underpre-
dict performance on Atlas. The common theme for these
three machines, though, is that the best-fit models all have
penalties to γ. As these machines have fat-tree interconnects
with large switching costs, this indicates that the problem
lies with messages contending for the switches.

6. LESSONS ON SCALABILITY
Our performance model has significantly contributed to

our understanding of the scalability of AMG for large paral-
lel machines. In particular, both distance of communication
and contention among multicore nodes are major factors in
observed performance and including their effects into our
AMG model was essential to achieve a good fit. In this sec-
tion, we discuss the important lessons learned for ensuring
the scalability of AMG (and other HPC applications), both
for the design of HPC architectures and for AMG algorithms
themselves.

On the architectural side, interconnects must be able to
handle both distance and contention effectively. This prob-
lem was most noticeable on fat-tree machines where com-
munication distance was a big factor in performance, with γ

larger than α or not far from it in magnitude on each plat-
form. Most of this cost came from the top-level switch, as
the value of α reflected the cost of communication through
one of the lower-level switches. In addition, there was con-
tention in the switches, reflected by the models with penal-
ties to γ giving the best approximation to the performance
on these machines. Future machines with the fat-tree topol-
ogy will need switches that can handle growing amounts
of traffic with smaller and smaller delays. Furthermore, ma-
chines with a torus interconnect are not immune from penal-
ties to distance or contention either, as the results on Jaguar
showed. The main factor was contention among the cores, as
shown in the effectiveness of the penalty to α. As is the case
with the fat-tree machines, future machines with a mesh or
torus topology will also need to be able to handle increasing
communication distances and contention among the cores
on each node.



0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Intrepid, 128 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Intrepid, 1024 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Intrepid, 8192 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Intrepid, 65536 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

Figure 3: Performance model results on Intrepid.

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Jaguar, 128 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Jaguar, 1024 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Jaguar, 8192 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Jaguar, 65536 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

Figure 4: Performance model results on Jaguar.



0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 128 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 1024 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Hera, 3456 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Zeus, 512 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

Figure 5: Performance model results on Hera and
Zeus.

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Atlas, 512 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

Level

T
im

e
 (

s
)

AMG Time by Level on Atlas, 1728 Processes

 

 

α−β Model

α−β−γ Model

β Penalty
 

 

α,β Penalties

β,γ Penalties

α,β,γ Penalties

Figure 6: Performance model results on Atlas.

It is likely, though, that improvements in interconnection
networks will not be enough to ensure the scalability of AMG
in the future. Increasing numbers of cores and cores per
node in future parallel machines will make the problems
of distance and contention even greater. AMG itself will
have to adapt to the changing landscape through algorithmic
changes to better handle its performance problems on coarse
grids. These changes will have to reduce the amount of com-
munication, whether by trading it for redundant computa-
tion, or by using new coarsening and interpolation schemes
to create operators that involve less communication.

7. CONCLUSIONS
Motivated by a desire to understand the issues impeding

the scalability of AMG on HPC platforms, we developed a
performance model for the AMG solve cycle, with penal-
ties to account for various performance problems: distance
of communication, low effective bandwidth, and contention
among the multiple cores on each node. Our results found
that distance and contention were both substantial perfor-
mance bottlenecks for AMG. With core counts soon to reach
the millions, and eventually the billions in future exascale
machines, we expect these bottlenecks to become more se-
vere unless changes are made to AMG to alleviate the exten-
sive communication requirements on the coarser grid levels.

In the future, we will use the models developed in this
work to guide changes to the AMG solve cycle. In particular,
we will reduce AMG’s communication burden and explore
possibilities that include the use of redundant computation
in place of communication and algorithmic changes that re-



duce the amount of required data movements. We will also
investigate and model the setup phase on AMG, looking for
ways to reduce its communication burden as well. Other
issues of interest are the impact of data movement through
the memory hierarchy, using threads, different sparse stor-
age formats, and the influence of the mapping of tasks to
nodes in the machine. Our ultimate goal is to ensure the
scalability of AMG for the exascale machines of tomorrow.

Acknowledgments

We thank the reviewers for their constructive and very helpful

comments. This work was supported in part by the Office of

Advanced Scientific Computing Research, Office of Science, U.S.

Department of Energy, under award DE-FG02-08ER25835, and

in part by the National Science Foundation award 0837719. Part

of this work was performed under the auspices of the U.S. De-

partment of Energy by Lawrence Livermore National Laboratory

under contract DE-AC52-07NA27344 (LLNL-CONF-473462). It

also used resources of the Argonne Leadership Computing Facil-

ity at Argonne National Laboratory, which is supported by the

Office of Science of the U.S. Department of Energy under con-

tract DE-AC02-06CH11357, as well as resources of the National

Center for Computational Sciences at Oak Ridge National Labo-

ratory, which is supported by the Office of Science of the U.S. De-

partment of Energy under Contract No. DE-AC05-00OR22725.

These resources were made available via the Performance Eval-

uation and Analysis Consortium End Station, a Department of

Energy INCITE project. Neither Contractor, DOE, or the U.S.

Government, nor any person acting on their behalf: (a) makes

any warranty or representation, express or implied, with respect

to the information contained in this document; or (b) assumes

any liabilities with respect to the use of, or damages resulting

from the use of any information contained in the document.

8. REFERENCES
[1] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang.

Challenges of Scaling Algebraic Multigrid across
Modern Multicore Architectures. In 25th IEEE
Parallel and Distributed Processing Symposium,
Anchorage, AK, May 2011.

[2] A. H. Baker, M. Schulz, and U. M. Yang. On the
Performance of an Algebraic Multigrid Solver on
Multicore Clusters. In VECPAR’10: 9th International
Meeting on High Performance Computing for
Computational Science, Berkeley, CA, June 2010.

[3] B. Barnes, B. Rountree, D. Lowenthal, J. Reeves,
B. R. de Supinski, and M. Schulz. A Regression-Based
Approach to Scalability Prediction. June 2008.

[4] J. Dongarra and P. Luszczek. Introduction to the
HPCChallenge Benchmark Suite. Technical Report
ICL-UT-05-01, University of Tennessee, Knoxville,
March 2005.

[5] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and
C. Weiss. Cache Optimization for Structured and
Unstructured Grid Multigrid. Electronic Transactions
on Numerical Analysis, 10:21–40, 2000.

[6] R. D. Falgout, J. E. Jones, and U. M. Yang. Pursuing
Scalability for hypre’s Conceptual Interfaces. ACM
Transactions on Mathematical Software, 31:326–350,
September 2005.

[7] H. Gahvari. Benchmarking Sparse Matrix-Vector
Multiply. Master’s thesis, University of California,
Berkeley, December 2006.

[8] H. Gahvari and W. Gropp. An Introductory Exascale
Feasibility Study for FFTs and Multigrid. In 24th
IEEE International Parallel and Distributed
Processing Symposium, Atlanta, GA, April 2010.

[9] H. Gahvari, M. Hoemmen, J. Demmel, and K. Yelick.
Benchmarking Sparse Matrix-Vector Multiply in Five
Minutes. In SPEC Benchmark Workshop 2007,
Austin, TX, January 2007.

[10] W. Gropp. Parallel Computing and Domain
Decomposition. In T. Chan, D. Keyes, G. Meurant,
J. Scroggs, and R. Voigt, editors, Fifth Conference on
Domain Decomposition Methods for Partial
Differential Equations, pages 349–361. SIAM, 1992.

[11] V. E. Henson and U. M. Yang. BoomerAMG: A
parallel algebraic multigrid solver and preconditioner.
Applied Numerical Mathematics, 41:155–177, April
2002.

[12] hypre: High performance preconditioners.
http://www.llnl.gov/CASC/hypre/.

[13] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini,
A. Wasserman, and M. Gittings. Predictive
performance and scalability modeling of a large-scale
application. Nov. 2001.

[14] S. S. Shende and A. D. Malony. The TAU Parallel
Performance System. International Journal of High
Performance Computing Applications, 20:287–311,
May 2006.

[15] A. Snavely, N. Wolter, and L. Carrington. Modeling
application performance by convolving machine
signatures with application profiles. In IEEE
Workshop on Workload Characterization, 2001.,
December 2001.

[16] H. D. Sterck, R. D. Falgout, J. W. Nolting, and U. M.
Yang. Distance-two interpolation for parallel algebraic
multigrid. Numerical Linear Algebra With
Applications, 15:115–139, April 2008.

[17] H. D. Sterck, U. M. Yang, and J. J. Heys. Reducing
complexity in parallel algebraic multigrid
preconditioners. SIAM Journal on Matrix Analysis
and Applications, 27:1019–1039, 2006.

[18] K. Stüben. An introduction to algebraic multigrid. In
U. Trottenberg, C. Oosterlee, and A. Schüller, editors,
Multigrid, pages 413–528. Academic Press, San Diego,
CA, 2001.

[19] U. M. Yang. On long-range interpolation operators for
aggressive coarsening. Numerical Linear Algebra With
Applications, 17:453–472, April 2010.


